

# MOMENTUM PRINCIPLE

## 1. The Momentum Equation for Cartesian Coordinates

X-direction:

$$\sum F_x = \frac{d}{dt} \int_{cv} v_x \rho dQ + \sum_{cs} (\dot{m}v)_{outX} - \sum_{cs} (\dot{m}v)_{inX}$$

Y-direction:

$$\sum F_y = \frac{d}{dt} \int_{cv} v_y \rho dQ + \sum_{cs} (\dot{m}v)_{outY} - \sum_{cs} (\dot{m}v)_{inY}$$

Z-direction:

$$\sum F_z = \frac{d}{dt} \int_{cv} v_z \rho dQ + \sum_{cs} (\dot{m}v)_{outZ} - \sum_{cs} (\dot{m}v)_{inZ}$$

## 2. The pressure rise across a wave produced in a pipe (Water Hammer)

$$\Delta p = \rho v c$$

## 3. Momentum - of - Momentum Equation

$$\sum M = \frac{d}{dt} \int_{cv} (r \times v) \rho dQ + \sum_{cs} r \times (\dot{m}v)_{out} - \sum_{cs} r \times (\dot{m}v)_{in}$$

# Problem 6.3

Situation: A water jet is filling a tank. The tank mass is 5 kg.

The tank contains 20 liters of water.

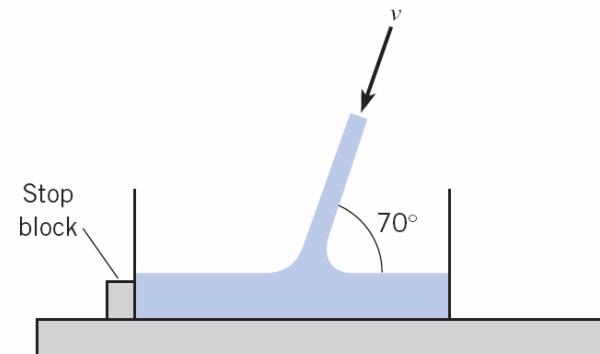
Data for the jet:  $d = 30 \text{ mm}$ ,  $v = 15 \text{ m/s}$ ,  $T = 15 \text{ }^{\circ}\text{C}$ .

Find: (a) Force on the bottom of the tank:  $N$

(b) Force acting on the stop block:  $F$

Properties: Water-Table A.5:  $\rho = 999 \text{ kg/m}^3$ ,  $\gamma = 9800 \text{ N/m}^3$ .

Assumptions: Steady flow.

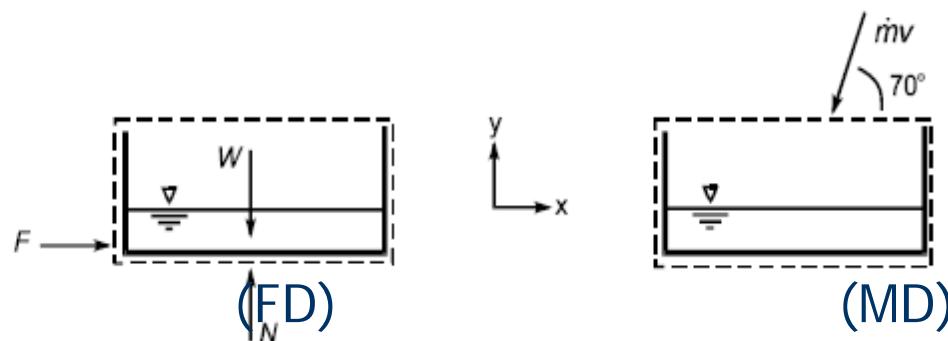


## APPROACH

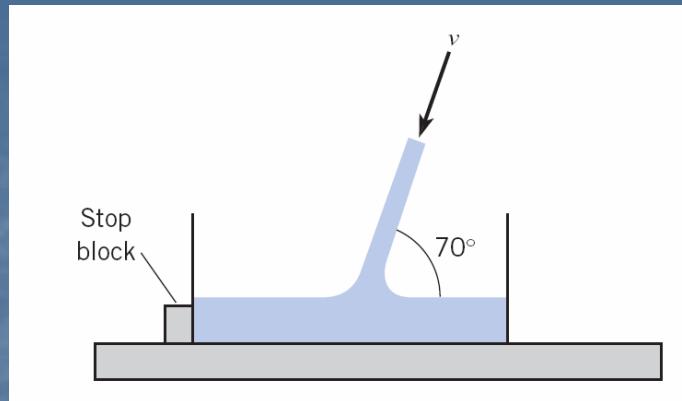
Apply the momentum principle in the x-direction and in the y-direction.

## ANALYSIS

Force and momentum diagrams



## Problem 6.3



Momentum principle (x-direction)

$$\begin{aligned}\sum F_x &= \sum_{cs} \dot{m}_o v_{ox} - \sum_{cs} \dot{m}_i v_{ix} \\ F &= -(-\dot{m}v \cos 70^\circ) \\ &= \rho A v^2 \cos 70^\circ\end{aligned}$$

Calculations

$$\begin{aligned}\rho A v^2 &= (999) \left( \frac{\pi \times 0.03^2}{4} \right) (15^2) \\ &= 158.9 \text{ N}\end{aligned}$$

$$\begin{aligned}F &= (158.9 \text{ N}) (\cos 70^\circ) \\ &= 54.3 \text{ N}\end{aligned}$$

$$F = 54.3 \text{ N acting to right}$$

y-direction

$$\begin{aligned}\sum F_y &= \sum_{cs} \dot{m}_o v_{oy} - \sum_{cs} \dot{m}_i v_{iy} \\ N - W &= -(-\dot{m}v \sin 70^\circ) \\ N &= W + \rho A v^2 \sin 70^\circ\end{aligned}$$

Calculations:

$$\begin{aligned}W &= W_{\text{tank}} + W_{\text{water}} \\ &= (5)(9.81) + (0.02)(9800) \\ &= 245.1 \text{ N}\end{aligned}$$

$$\begin{aligned}N &= W + \rho A v^2 \sin 70^\circ \\ &= (245.1 \text{ N}) + (158.9 \text{ N}) \sin 70^\circ\end{aligned}$$

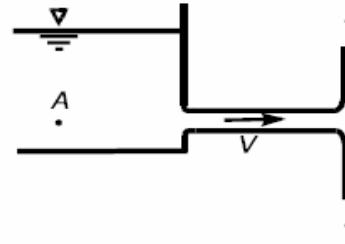
$$N = 149 \text{ N acting upward}$$

# Problem 6.6

Situation: Horizontal round jet strikes a plate.

Water at 70°F,  $\rho = 1.94 \text{ slug/ft}^3$ ,  $Q = 2 \text{ cfs}$ .

Horizontal component of force to hold plate stationary:  $F_x = 200 \text{ lbf}$



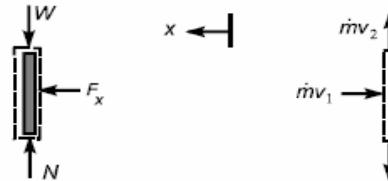
Find: Speed of water jet:  $v_1$

## APPROACH

Apply the momentum principle to a control volume surrounding the plate.

## ANALYSIS

Force and momentum diagrams



Momentum principle (x-direction)

$$\sum F_x = -\dot{m}v_{1x}$$

$$F_x = -(-\dot{m}v_1) = \rho Q v_1$$

$$v_1 = \frac{F_x}{\rho Q}$$

$$= \frac{200}{1.94 \times 2}$$

$$v_1 = 51.5 \text{ ft/s}$$

# Problem 6.5

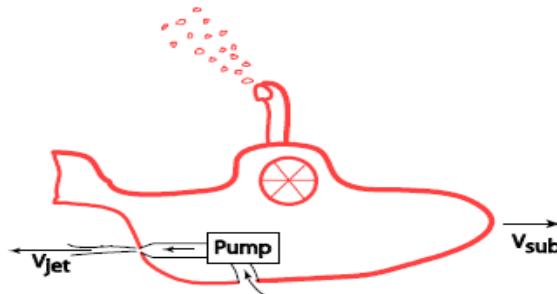
Situation: A design contest features a submarine powered by a water jet. Speed of the sub is  $V_{\text{sub}} = 1.5 \text{ m/s}$ .

Inlet diameter is  $D_1 = 25 \text{ mm}$ . Nozzle diameter is  $D_2 = 5 \text{ mm}$ .

Hydrodynamic drag force ( $F_D$ ) can be calculated using

$$F_D = C_D \left( \frac{\rho V_{\text{sub}}^2}{2} \right) A_p$$

Coefficient of drag is  $C_D = 0.3$ . Projected area is  $A_p = 0.28 \text{ m}^2$ .



Find: Speed of the fluid jet ( $V_{\text{jet}}$ ).

Properties: Water-Table A.5:  $\rho = 999 \text{ kg/m}^3$ .

Assumptions: Assume steady flow so that the accumulation of momentum term is zero.

## APPROACH

The speed of the fluid jet can be found from the momentum principle because the drag force will balance with the net rate of momentum outflow.

## ANALYSIS

Momentum equation. Select a control volume that surrounds the sub. Select a reference frame located on the submarine. Let section 1 be the outlet (water jet) and section 2 be the inlet. The momentum equation is

$$\begin{aligned} \sum \mathbf{F} &= \sum_{\text{cs}} \dot{m}_o \mathbf{v}_o - \sum_{\text{cs}} \dot{m}_i \mathbf{v}_i \\ F_{\text{Drag}} &= \dot{m}_2 v_2 - \dot{m}_1 v_{1x} \end{aligned}$$

By continuity,  $\dot{m}_1 = \dot{m}_2 = \rho A_{\text{jet}} V_{\text{jet}}$ . The outlet velocity is  $v_2 = V_{\text{jet}}$ . The x-component of the inlet velocity is  $v_{1x} = V_{\text{sub}}$ . The momentum equation simplifies to

$$F_{\text{Drag}} = \rho A_{\text{jet}} V_{\text{jet}} (V_{\text{jet}} - V_{\text{sub}})$$

The drag force is

$$\begin{aligned} F_{\text{Drag}} &= C_D \left( \frac{\rho V_{\text{sub}}^2}{2} \right) A_p \\ &= 0.3 \left( \frac{(999 \text{ kg/m}^3) (1.5 \text{ m/s})^2}{2} \right) (0.28 \text{ m}^2) \\ &= 94.4 \text{ N} \end{aligned}$$

The momentum equation becomes

$$\begin{aligned} F_{\text{Drag}} &= \rho A_{\text{jet}} V_{\text{jet}} [V_{\text{jet}} - V_{\text{sub}}] \\ 94.4 \text{ N} &= (999 \text{ kg/m}^3) (1.96 \times 10^{-5} \text{ m}^2) V_{\text{jet}} [V_{\text{jet}} - (1.5 \text{ m/s})] \end{aligned}$$

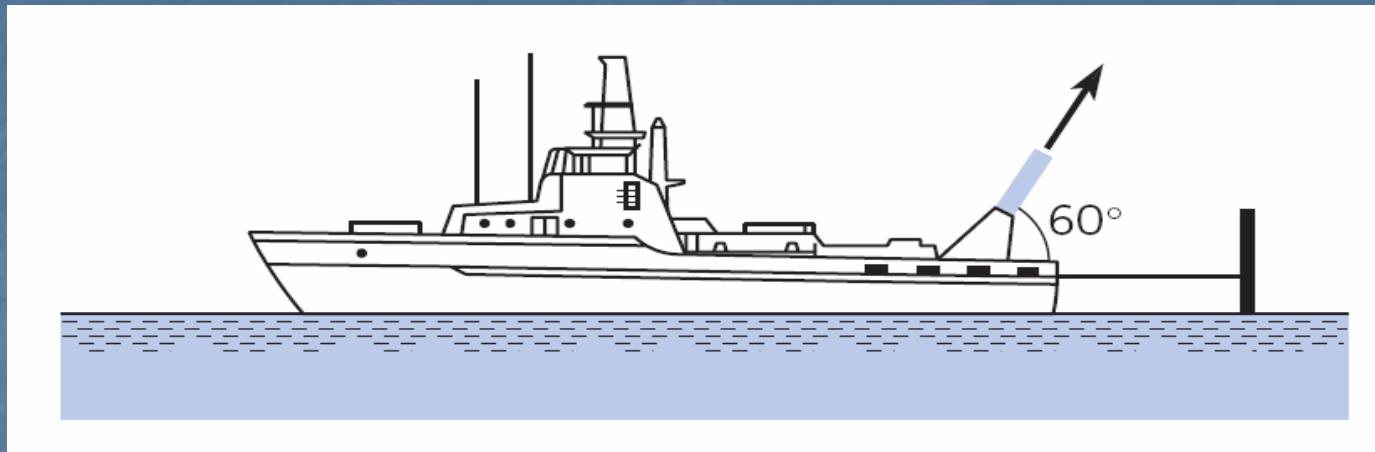
Solving for the jet speed gives

$$V_{\text{jet}} = 70.2 \text{ m/s}$$

### COMMENTS

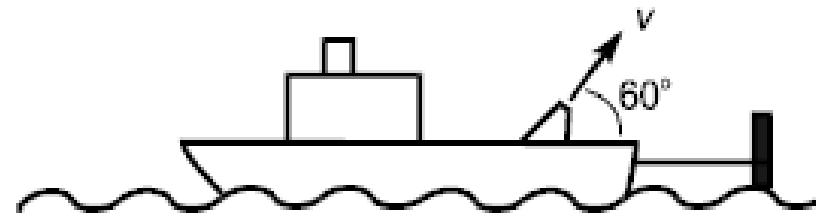
1. The jet speed (70.2 m/s) is above 150 mph. This present a safety issue. Also, this would require a pump that can produce a large pressure rise.
2. It is recommended that the design be modified to produce a lower jet velocity. One way to accomplish this goal is to increase the diameter of the jet.

## Problem 6.9



Situation: Water jet from a fire hose on a boat.

Diameter of jet is  $d = 3$  in., speed of jet is  $V = 70$  mph = 102.7 ft/s.



Find: Tension in cable:  $T$

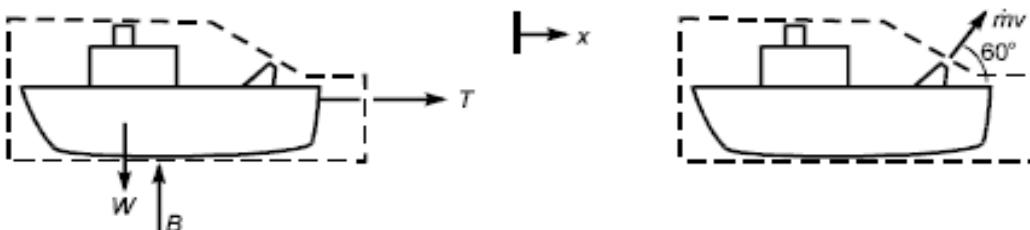
Properties: Table A.5 (water at 50 °F):  $\rho = 1.94$  slug/ ft<sup>3</sup>.

## APPROACH

Apply the momentum principle.

## ANALYSIS

Force and momentum diagrams



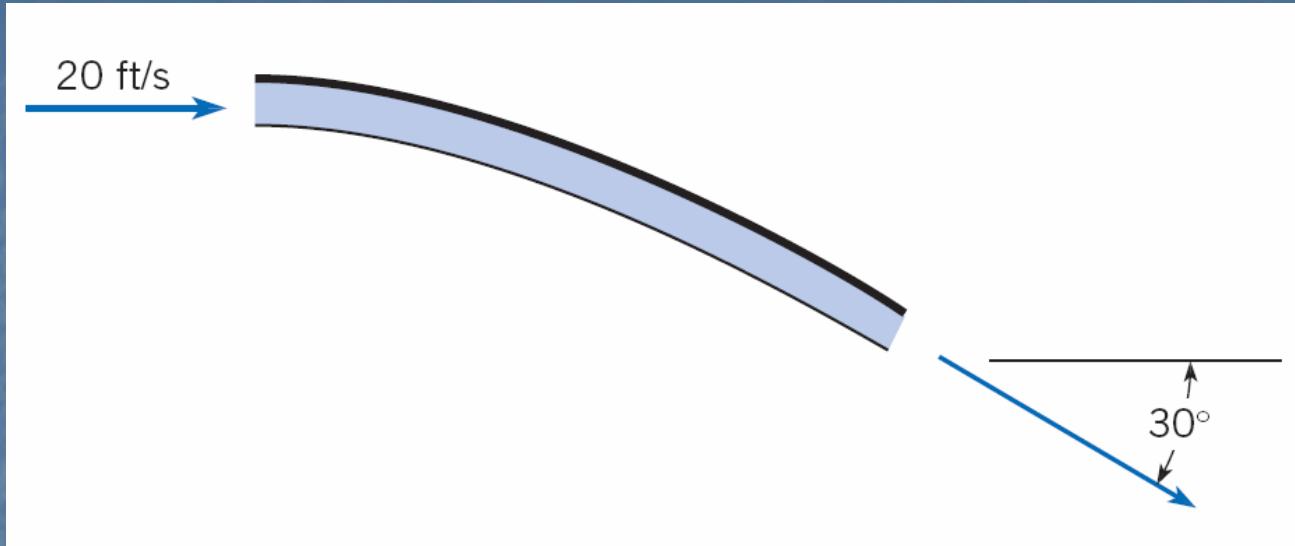
### Flow rate

$$\begin{aligned}\dot{m} &= \rho A V \\ &= (1.94 \text{ slug/ft}^3) (\pi \times (1.5/12 \text{ ft})^2) (102.7 \text{ ft/s}) \\ &= 9.78 \text{ slug/s}\end{aligned}$$

### Momentum principle ( $x$ -direction)

$$\begin{aligned}\sum F &= \dot{m} (v_o)_x \\ T &= \dot{m} V \cos 60^\circ \\ T &= (9.78 \text{ slug/s}) (102.7 \text{ ft/s}) \cos 60^\circ \\ &= 502.2 \text{ lbf}\end{aligned}$$

## Problem 6.20



Situation: A water jet is deflected by a fixed vane,  $\dot{m} = 25 \text{ lbm/s} = 0.776 \text{ slug/s}$ .  
 $v_1 = 20 \text{ ft/s}$



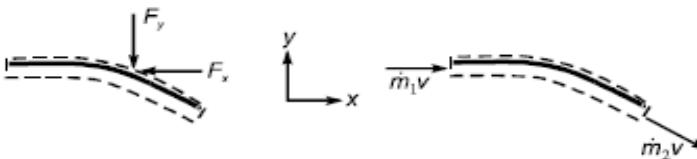
Find: Force of the water on the vane:  $\mathbf{F}$

## APPROACH

Apply the Bernoulli equation, and then the momentum principle.

## ANALYSIS

Force and momentum diagrams



### Bernoulli equation

$$v_1 = v_2 = v = 20 \text{ ft/s}$$

### Momentum principle (x-direction)

$$\sum F_x = \dot{m}_o (v_o)_x - \dot{m}_i (v_i)_x$$

$$-F_x = \dot{m}v \cos 30 - \dot{m}v$$

$$F_x = \dot{m}v(1 - \cos 30) = 0.776 \times 20 \times (1 - \cos 30)$$

$$F_x = 2.08 \text{ lbf to the left}$$

### y-direction

$$\sum F_y = \dot{m}_o (v_o)_y$$

$$-F_y = \dot{m}(-v \cos 60) = -0.776 \times 20 \times \sin 30$$

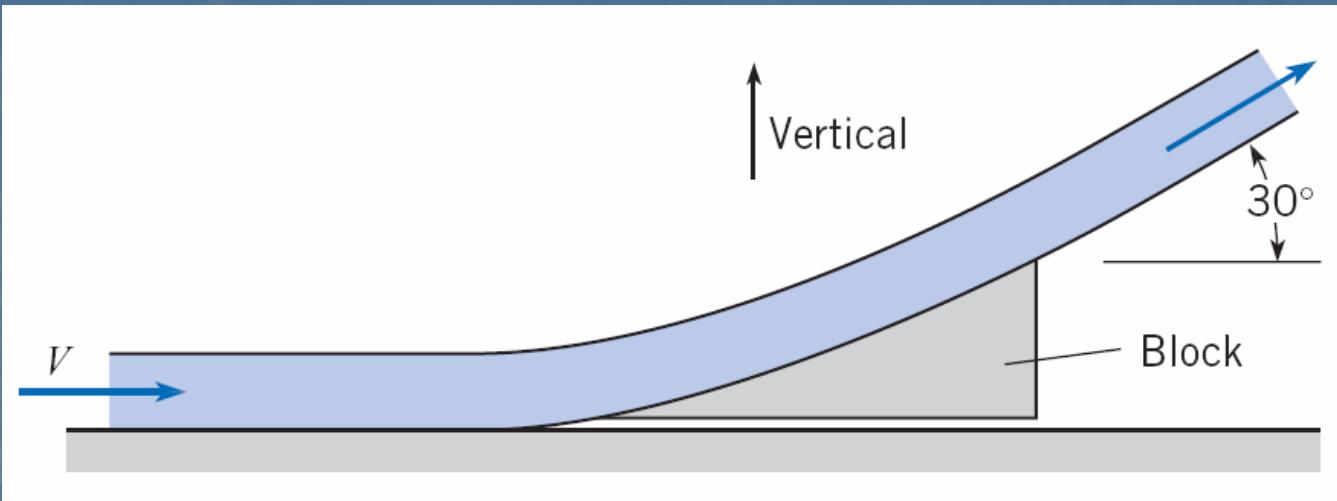
$$F_y = 7.76 \text{ lbf downward}$$

Since the forces acting on the vane represent a state of equilibrium, the force of water on the vane is equal in magnitude & opposite in direction.

$$\mathbf{F} = -F_x \mathbf{i} - F_y \mathbf{j}$$

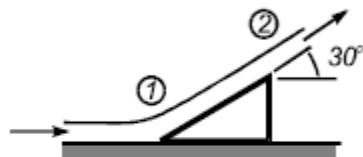
$$= \boxed{(2.08 \text{ lbf})\mathbf{i} + (7.76 \text{ lbf})\mathbf{j}}$$

# Problem 6.21



Situation: A water jet strikes a block and the block is held in place by friction—however, we do not know if the frictional force is large enough to prevent the block from sliding.

$v_1 = 10 \text{ m/s}$ ,  $\dot{m} = 1 \text{ kg/s}$ ,  $\mu = 0.1$ , mass of block:  $m = 1 \text{ kg}$



Find:

- Will the block slip?
- Force of the water jet on the block:  $\mathbf{F}$

Assumptions:

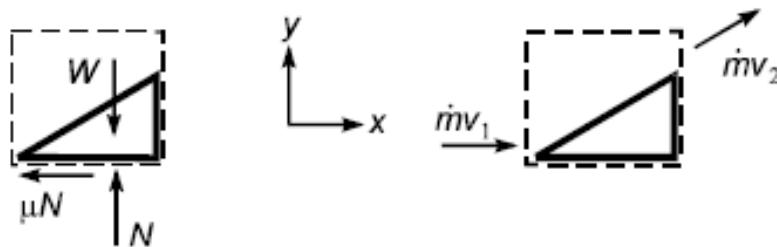
- Neglect weight of water.
- As the jet passes over the block (a) neglect elevation changes and (b) neglect viscous forces.

## APPROACH

Apply the Bernoulli equation, then the momentum principle.

## ANALYSIS

Force and momentum diagrams



### Bernoulli equation

$$v_1 = v_2 = v = 10 \text{ m/s}$$

### Momentum principle ( $x$ -direction)

$$\begin{aligned}\sum F_x &= \dot{m}_o (v_o)_x - \dot{m}_i (v_i)_x \\ -F_f &= \dot{m}v \cos 30 - \dot{m}v \\ F_f &= \dot{m}v(1 - \cos 30) \\ &= 1.0 \times 10 \times (1 - \cos 30) \\ F_f &= 1.34 \text{ N}\end{aligned}$$

*y*-direction

$$\begin{aligned}\sum F_y &= \dot{m}_o (v_o)_y \\ N - W &= \dot{m}(v \sin 30) \\ N &= mg + \dot{m}(v \sin 30) \\ &= 1.0 \times 9.81 + 1.0 \times 10 \times \sin 30 \\ &= 14.81 \text{ N}\end{aligned}$$

Analyze friction:

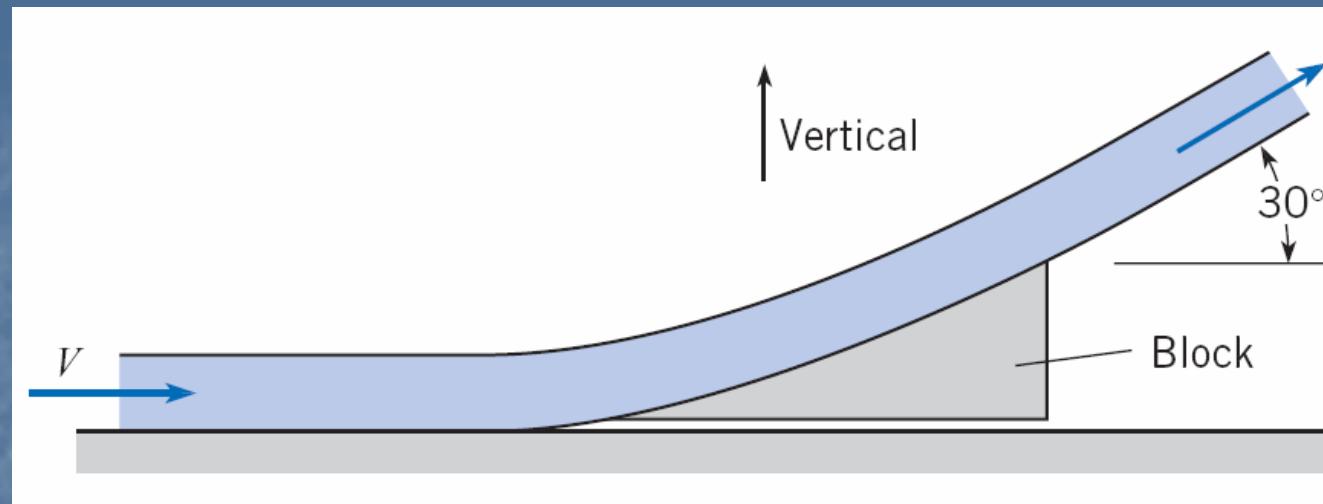
- $F_f$  (required to prevent block from slipping) = 1.34 N
- $F_f$  (maximum possible value) =  $\mu N = 0.1 \times 14.81 = 1.48 \text{ N}$

block will not slip

Equilibrium of forces acting on block gives

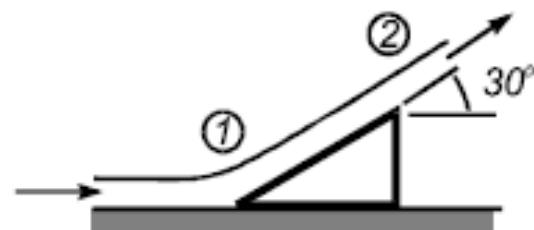
$$\begin{aligned}\mathbf{F} &= (\text{Force of the water jet on the block}) \\ &= -(\text{Force needed to hold the block stationary}) \\ &= -F_f \mathbf{i} + (W - N) \mathbf{j}\end{aligned}$$

## Problem 6.22



Situation: A water jet strikes a block and the block is held in place by friction  $\mu = 0.1$ .

$\dot{m} = 1 \text{ kg/s}$ , mass of block:  $m = 1 \text{ kg}$



Find: Maximum velocity ( $v$ ) such that the block will not slip.

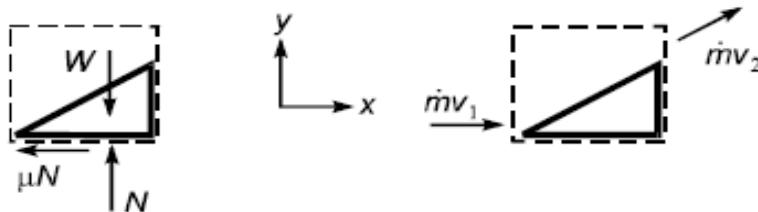
Assumptions: Neglect weight of water.

## APPROACH

Apply the Bernoulli equation, then the momentum principle.

## ANALYSIS

Force and momentum diagrams



### Bernoulli equation

$$v_1 = v_2 = v$$

### Momentum principle (x-direction)

$$\begin{aligned}\sum F_x &= \sum_{cs} \dot{m}_o v_{ox} - \sum_{cs} \dot{m}_i v_{ix} \\ -\mu N &= \dot{m}v \cos 30 - \dot{m}v \\ N &= \dot{m}v (1 - \cos 30) / \mu\end{aligned}$$

### y-direction

$$\begin{aligned}\sum F_y &= \sum_{cs} \dot{m}_o v_{oy} - \sum_{cs} \dot{m}_i v_{iy} \\ N - W &= \dot{m}(v \sin 30) \\ N &= mg + \dot{m}(v \sin 30)\end{aligned}$$

### Combine previous two equations

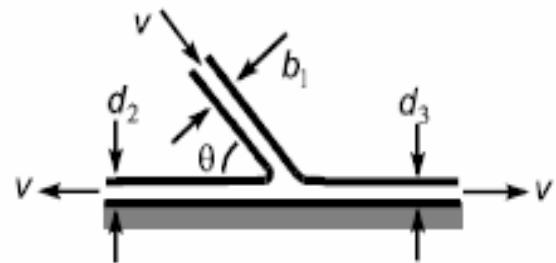
$$\begin{aligned}\dot{m}v (1 - \cos 30) / \mu &= mg + \dot{m}(v \sin 30) \\ v &= mg / [\dot{m}(1/\mu - \cos 30/\mu - \sin 30)] \\ v &= 1 \times 9.81 / [1 \times (1/0.1 - \cos 30/0.1 - \sin 30)]\end{aligned}$$

$$v = 11.7 \text{ m/s}$$

## Problem 6.24

Situation: 2D liquid jet strikes a horizontal surface.

$$v_1 = v_2 = v_3 = v$$



Find: Derive formulas for  $d_2$  and  $d_3$  as a function of  $b_1$  and  $\theta$ .

Assumptions: Force associated with shear stress is negligible; let the width of the jet in the z-direction = w.

## APPROACH

Apply the continuity principle, then the momentum principle.

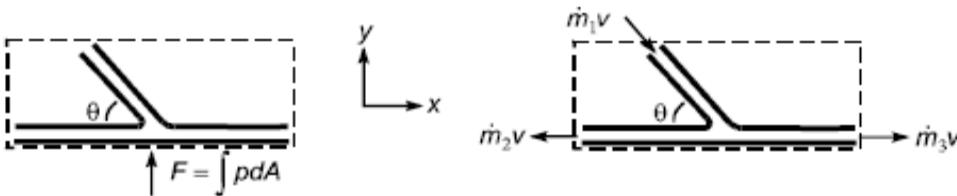
### Continuity principle

$$\dot{m}_1 = \dot{m}_2 + \dot{m}_3$$

$$\rho w b_1 v = \rho w d_2 v + \rho w d_3 v$$

$$b_1 = d_2 + d_3$$

Force and momentum diagrams



### Momentum principle (x-direction)

$$\sum F_x = \sum_{cs} \dot{m}_o \mathbf{v}_o - \sum_{cs} \dot{m}_i \mathbf{v}_i$$

$$0 = (\dot{m}_3 v + \dot{m}_2 (-v)) - \dot{m}_1 v \cos \theta$$

$$0 = (\rho w d_3 v^2 - \rho w d_2 v^2) - \rho w b_1 v^2 \cos \theta$$

$$0 = d_3 - d_2 - b_1 \cos \theta$$

Combining x-momentum and continuity principle equations

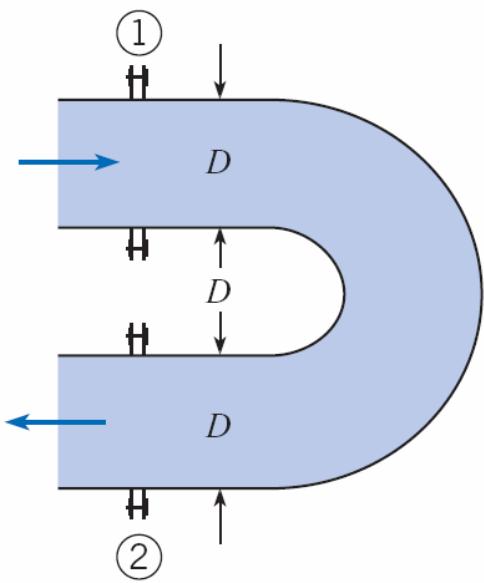
$$d_3 = d_2 + b_1 \cos \theta$$

$$d_3 = b_1 - d_2$$

$$d_2 = b_1(1 - \cos \theta)/2$$

$$d_3 = b_1(1 + \cos \theta)/2$$

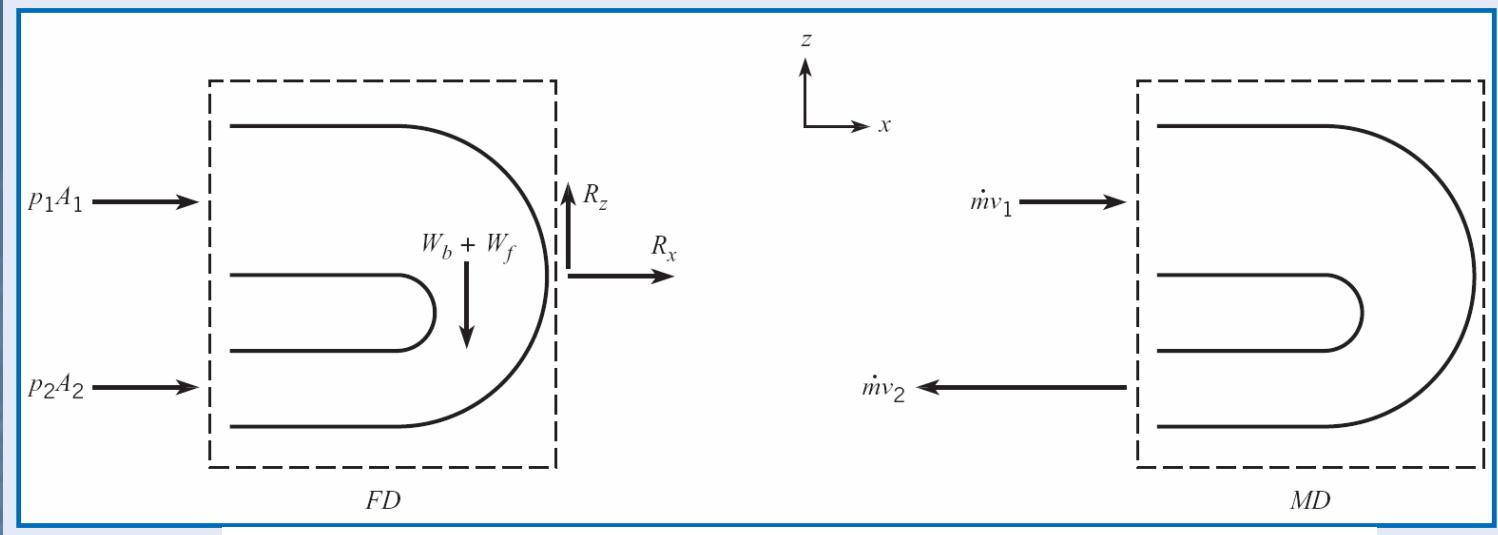
## Problem 6.32



Situation: Fluid (density  $\rho$ , discharge  $Q$ , and velocity  $V$ ) flows through a  $180^\circ$  pipe bend—additional details are provided in the problem statement.. Cross sectional area of pipe is  $A$ .

Find: Magnitude of force required at flanges to hold the bend in place.

Assumptions: Gage pressure is same at sections 1 and 2. Neglect gravity.



### APPROACH

Apply the momentum principle.

### ANALYSIS

Momentum principle ( $x$ -direction)

$$\begin{aligned}\sum F_x &= \sum_{cs} \dot{m}_o v_{ox} - \sum_{cs} \dot{m}_i v_{ix} \\ p_1 A_1 + p_2 A_2 + F_x &= \dot{m}(v_2 - v_1)\end{aligned}$$

thus

$$F_x = -2pA - 2\dot{m}V$$

$$F_x = -2pA - 2\rho QV$$

Correct choice is (d)

# Problem 6.37

Find: Vertical component of force exerted by the anchor on the bend:  $F_a$

## APPROACH

Apply the momentum principle.

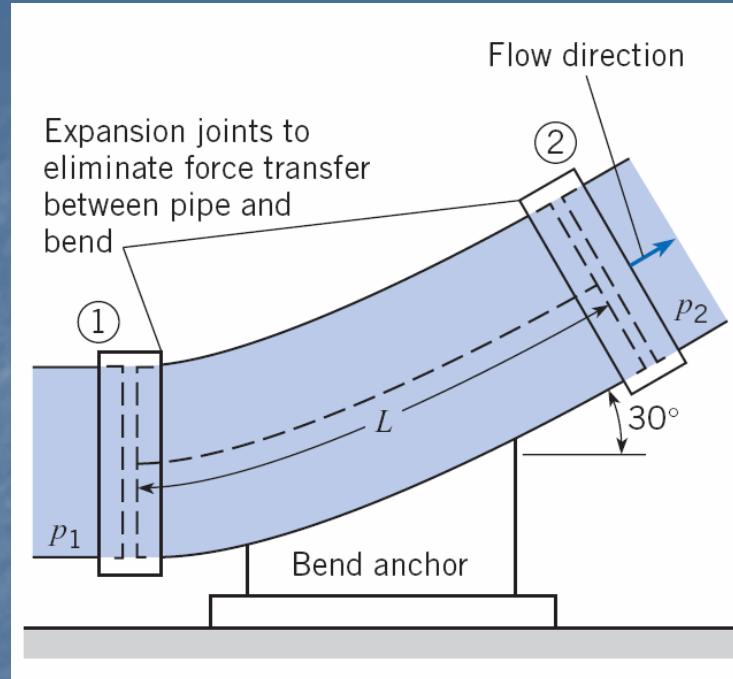
## ANALYSIS

Velocity calculation

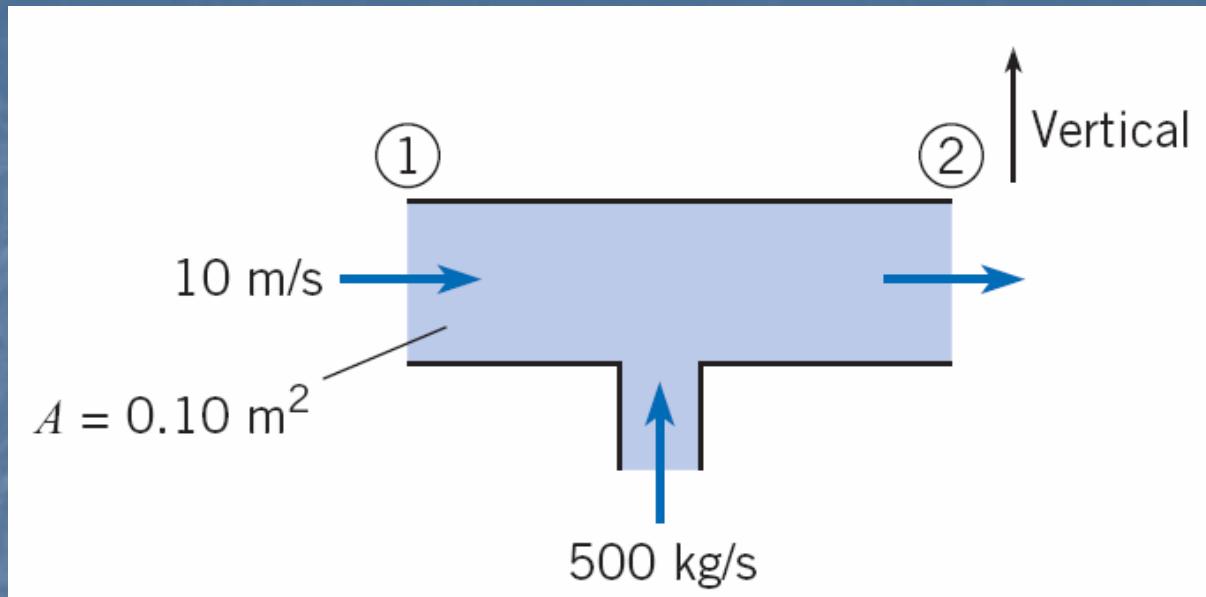
$$\begin{aligned}v &= Q/A \\&= 31.4/(\pi \times 1 \times 1) \\&= 9.995 \text{ ft/sec}\end{aligned}$$

Momentum principle ( $y$ -direction)

$$\begin{aligned}\sum F_y &= \rho Q(v_{2y} - v_{1y}) \\F_a - W_{\text{water}} - W_{\text{bend}} - p_2 A_2 \sin 30^\circ &= \rho Q(v \sin 30^\circ - v \sin 0^\circ) \\F_a &= \pi \times 1 \times 1 \times 4 \times 62.4 + 300 \\&\quad + 8.5 \times 144 \times \pi \times 1 \times 1 \times 0.5 \\&\quad + 1.94 \times 31.4 \times (9.995 \times 0.5 - 0) \\F_a &= 3310 \text{ lbf}\end{aligned}$$



## Problem 6.44

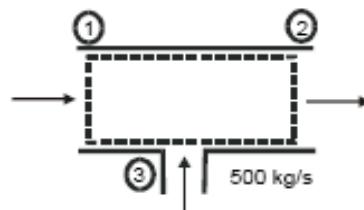


Situation: Water flows through a tee—additional details are provided in the problem statement.

Find: Pressure difference between sections 1 and 2.

## APPROACH

Apply the continuity principle, then the momentum principle.



## ANALYSIS

### Continuity principle

$$\dot{m}_1 + 500 \text{ kg/s} = \dot{m}_2$$

$$\dot{m}_1 = (10 \text{ m/s})(0.10 \text{ m}^2)(1000 \text{ kg/m}^3) = 1000 \text{ kg/s}$$

$$\dot{m}_2 = 1000 + 500 = 1500 \text{ kg/s}$$

$$v_2 = (\dot{m}_2)/(\rho A_2) = (1500)/((1000)(0.1)) = 15 \text{ m/s}$$

### Momentum principle ( $x$ -direction)

$$\sum F_x = \dot{m}_2 v_{2x} - \dot{m}_1 v_{1x} - \dot{m}_3 v_{3x}$$

$$p_1 A_1 + p_2 A_2 = \dot{m}_2 v_2 - \dot{m}_1 v_1 - 0$$

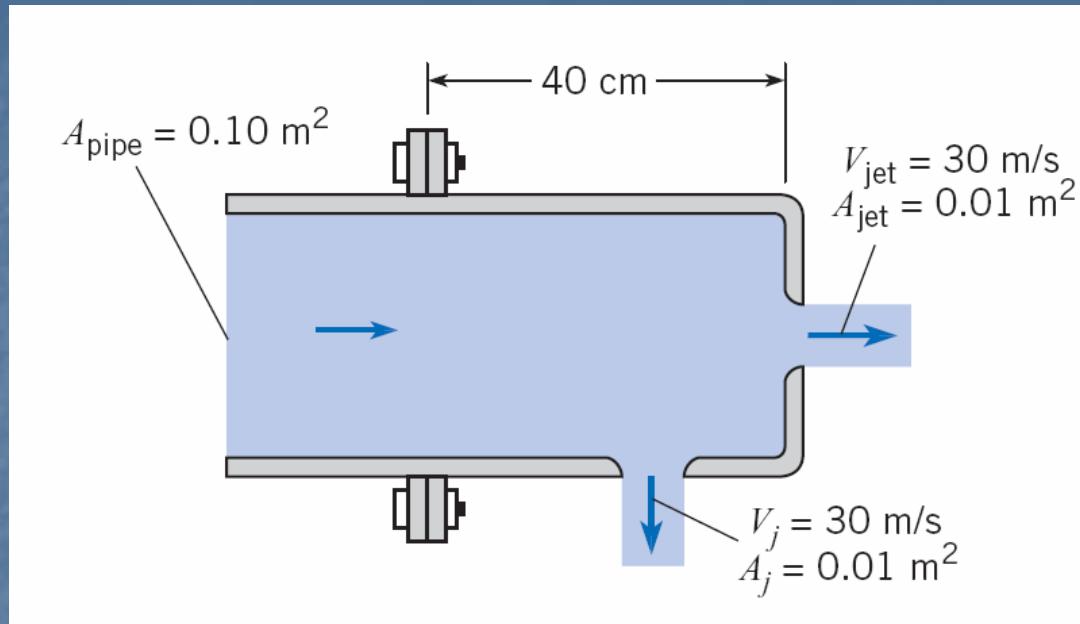
$$A(p_1 - p_2) = (1500)(15) - (1000)(10)$$

$$p_1 - p_2 = (22,500 - 10,000)/0.10$$

$$= 125,000 \text{ Pa}$$

$$= \boxed{125 \text{ kPa}}$$

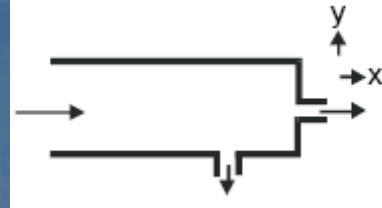
## Problem 6.49



Situation: Water flows through an unusual nozzle—additional details are provided in the problem statement.



Find: Force at the flange to hold the nozzle in place:  $\mathbf{F}$



## APPROACH

Apply the momentum principle.

## APPROACH

Apply the continuity principle, then the Bernoulli equation, and finally the momentum principle.

## ANALYSIS

### Continuity principle

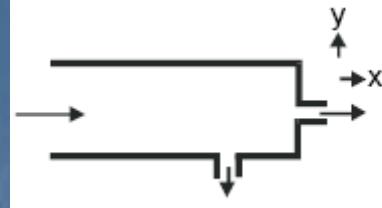
$$\begin{aligned}v_p A_p &= \sum v_j A_j \\v_p &= 2 \times 30 \times 0.01 / 0.10 \\&= 6.00 \text{ m/s}\end{aligned}$$

### Bernoulli equation

$$p_{\text{pipe}} / \gamma + v_p^2 / 2g = p_{\text{jet}} / \gamma + v_j^2 / 2g$$

Then

$$\begin{aligned}p_p &= (\gamma / 2g)(v_j^2 - v_p^2) \\&= 500(900 - 36) \\&= 432,000 \text{ Pa}\end{aligned}$$



### Momentum principle ( $x$ -direction)

$$\begin{aligned}
 p_p A_p + F_x &= -v_p \rho v_p A_p + v_j \rho v_j A_j \\
 F_x &= -1000 \times 6^2 \times 0.10 + 1,000 \times 30^2 \times 0.01 - 432,000 \times 0.1 \\
 F_x &= -37,800 \text{ N}
 \end{aligned}$$

### $y$ -direction

$$\begin{aligned}
 F_y &= \dot{m}(-v_j) = -v_j \rho v_j A \\
 &= -30 \times 1000 \times 30 \times 0.01 \\
 &= -9000 \text{ N}
 \end{aligned}$$

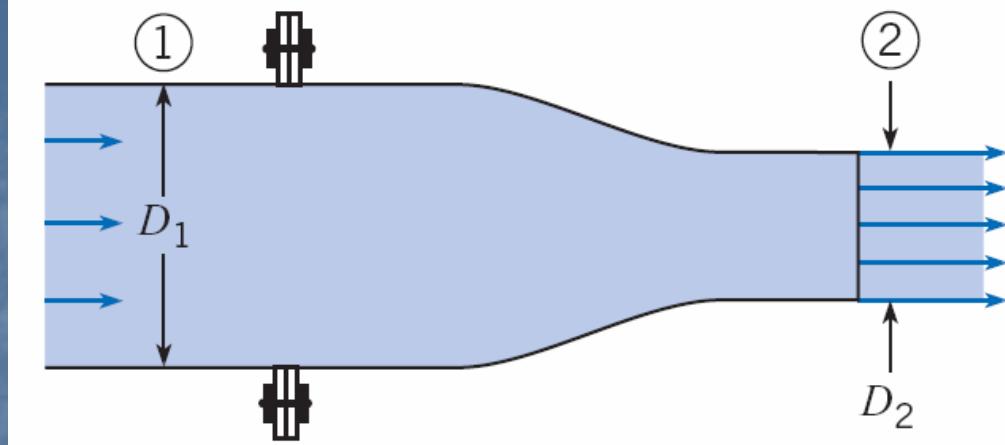
### $z$ -direction

$$\begin{aligned}
 \sum F_z &= 0 \\
 -200 - \gamma V + F_z &= 0 \\
 F_z &= 200 + 9810 \times 0.1 \times 0.4 \\
 &= 592 \text{ N}
 \end{aligned}$$

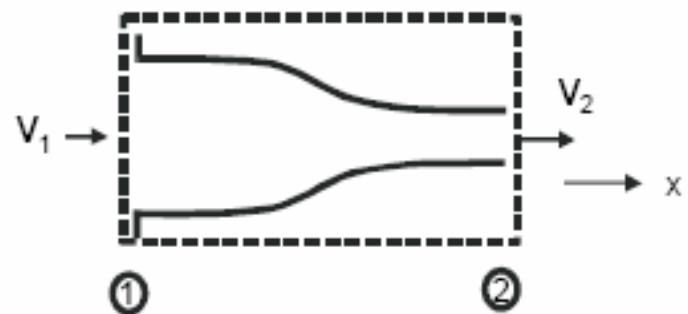
### Net force

$$\mathbf{F} = (-37.8\mathbf{i} - 9.0\mathbf{j} + 0.59\mathbf{k}) \text{ kN}$$

## Problem 6.50



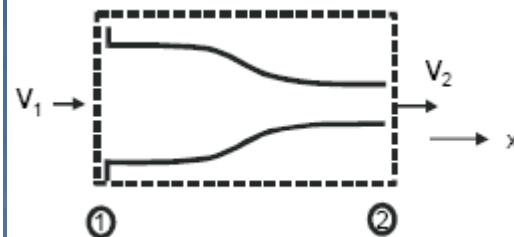
Situation: Water flows through a converging nozzle—additional details are provided in the problem statement.



Find: Force at the flange to hold the nozzle in place:  $F$

## APPROACH

Apply the Bernoulli equation to establish the pressure at section 1, and then apply the momentum principle to find the force at the flange.



## ANALYSIS

Continuity equation (select a control volume that surrounds the nozzle).

$$Q_1 = Q_2 = Q = 15 \text{ ft}^3/\text{s}$$

Flow rate equations

$$\begin{aligned} v_1 &= \frac{Q}{A_1} = \frac{4 \times Q}{\pi D_1^2} = \frac{4 \times (15 \text{ ft}^3/\text{s})}{\pi (1 \text{ ft})^2} \\ &= 19.099 \text{ ft/s} \end{aligned}$$

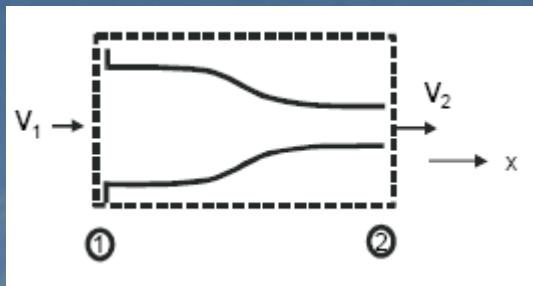
$$\begin{aligned} v_2 &= \frac{Q}{A_2} = \frac{4 \times Q}{\pi D_2^2} = \frac{4 \times (15 \text{ ft}^3/\text{s})}{\pi (9/12 \text{ ft})^2} \\ &= 33.953 \text{ ft/s} \end{aligned}$$

Bernoulli equation

$$\begin{aligned} p_1 + \frac{\rho v_1^2}{2} &= p_2 + \frac{\rho v_2^2}{2} \\ p_1 &= 0 + \frac{\rho(v_2^2 - v_1^2)}{2} \\ &= \frac{1.94 \text{ slug}/\text{ft}^3 (33.953^2 - 19.099^2) \text{ ft}^2/\text{s}^2}{2} \\ &= 764.4 \text{ lbf}/\text{ft}^2 \end{aligned}$$

Momentum principle ( $x$ -direction)

$$p_1 A_1 + F = \dot{m} v_2 - \dot{m} v_1$$



## Calculations

$$\begin{aligned} p_1 A_1 &= (764.4 \text{ lbf/ft}^2)(\pi/4)(1 \text{ ft})^2 \\ &= 600.4 \text{ lbf} \end{aligned}$$

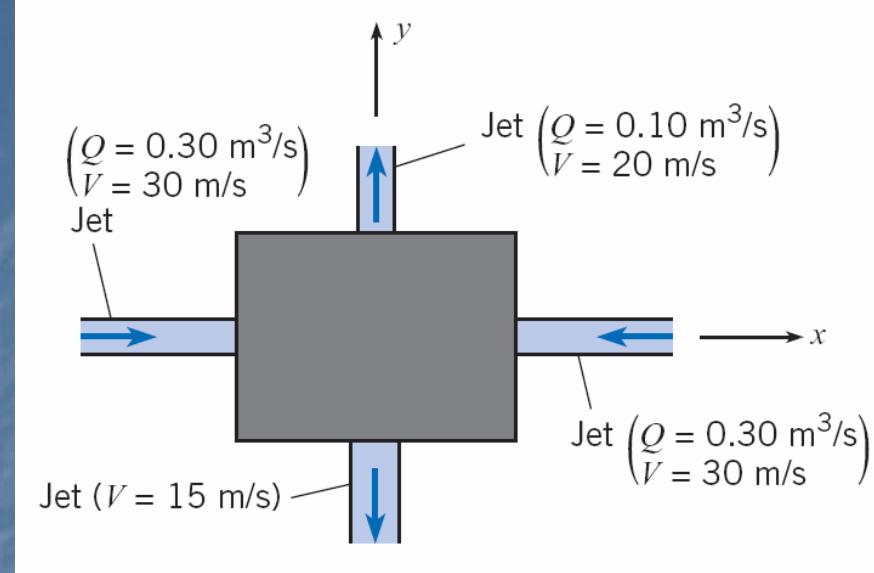
$$\begin{aligned} \dot{m}v_2 - \dot{m}v_1 &= \rho Q (v_2 - v_1) \\ &= (1.94 \text{ slug/ft}^3)(15 \text{ ft}^3/\text{s}) (33.953 - 19.098) \text{ ft/s} \\ &= 432.3 \text{ lbf} \end{aligned}$$

Substituting numerical values into the momentum equation

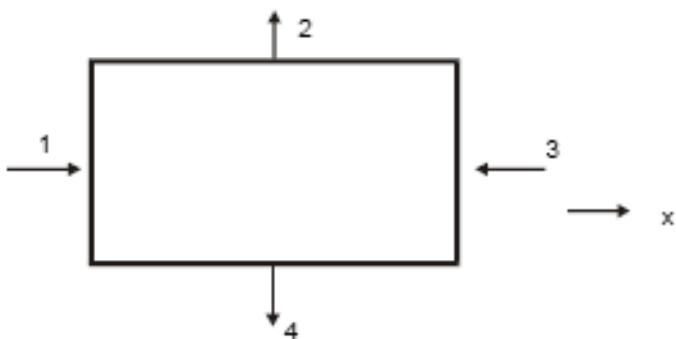
$$\begin{aligned} F &= -p_1 A_1 + (\dot{m}v_2 - \dot{m}v_1) \\ &= -600.4 \text{ lbf} + 432.3 \text{ lbf} \\ &= -168.1 \text{ lbf} \end{aligned}$$

$F = -168 \text{ lbf} \text{ (acts to left)}$

## Problem 6.61



Situation: Liquid flows through a "black box"—additional details are provided in the problem statement.



Find: Force required to hold the "black box" in place:  $\mathbf{F}$

## APPROACH

Apply the continuity principle, then the momentum principle.

## ANALYSIS

Continuity principle

$$\begin{aligned}Q_4 &= 0.6 - 0.10 \\&= 0.50 \text{ m}^3/\text{s}\end{aligned}$$

Momentum principle ( $x$ -direction)

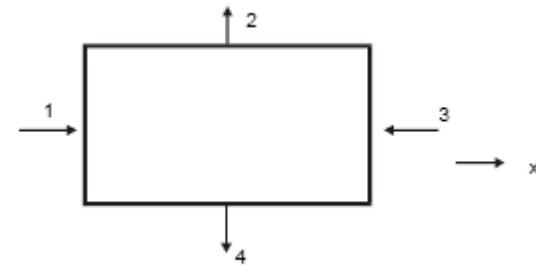
$$\begin{aligned}F_x &= -\dot{m}_1 v_{1x} - \dot{m}_3 v_{3x} \\&= -\dot{m}_1 v_1 + \dot{m}_3 v_3 \\&= 0\end{aligned}$$

$y$ -direction

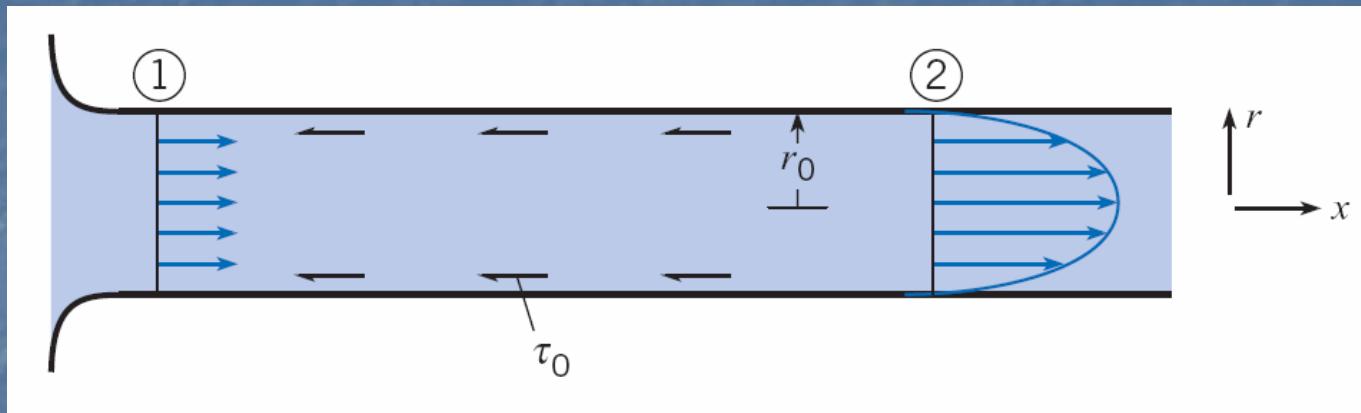
$$\begin{aligned}F_y &= \dot{m}_2 v_{2y} + \dot{m}_4 v_{4y} \\F_y &= \rho Q_2 v_2 - \rho Q_4 v_4 \\&= (2.0 \times 1000)(0.1)(20) - (2.0 \times 1000)(0.5)(15) \\&= -11.0 \text{ kN}\end{aligned}$$

Net Force

$$\boxed{\mathbf{F} = (0\mathbf{i} - 11.0\mathbf{j}) \text{ kN}}$$



## Problem 6.64



Situation: A flow in a pipe is laminar and fully developed—additional details are provided in the problem statement.

Find: Derive a formula for the resisting shear force ( $F_T$ ) as a function of the parameters  $D$ ,  $p_1, p_2$ ,  $\rho$ , and  $U$ .

## APPROACH

Apply the momentum principle, then the continuity principle.

## ANALYSIS

Momentum principle ( $x$ -direction)

$$\begin{aligned}\sum F_x &= \int_{cs} \rho v (v \cdot dA) \\ p_1 A_1 - p_2 A_2 - F_\tau &= \int_{A_2} \rho u_2^2 dA - (\rho A u_1) u_1 \\ p_1 A - p_2 A - F_\tau &= -\rho u_1^2 A + \int_{A_2} \rho u_2^2 dA\end{aligned}\tag{1}$$

Integration of momentum outflow term

$$\begin{aligned}u_2 &= u_{\max} (1 - (r/r_0)^2)^2 \\ u_2^2 &= u_{\max}^2 (1 - (r/r_0)^2)^2 \\ \int_{A_2} \rho u_2^2 dA &= \int_0^{r_0} \rho u_{\max}^2 (1 - (r/r_0)^2)^2 2\pi r dr \\ &= -\rho u_{\max}^2 \pi r_0^2 \int_0^{r_0} (1 - (r/r_0)^2)^2 (-2r/r_0^2) dr\end{aligned}$$

To solve the integral, let

$$u = 1 - \left(\frac{r}{r_o}\right)^2$$

Thus

$$du = \left(-\frac{2r}{r_o^2}\right) dr$$

The integral becomes

$$\begin{aligned}
 \int_{A_2} \rho u_2^2 dA &= -\rho u_{\max}^2 \pi r_0^2 \int_1^0 u^2 du \\
 &= -\rho u_{\max}^2 \pi r_0^2 \left( \frac{u^3}{3} \Big|_1^0 \right) \\
 &= -\rho u_{\max}^2 \pi r_0^2 \left( 0 - \frac{1}{3} \right) \\
 &= \frac{+\rho u_{\max}^2 \pi r_0^2}{3}
 \end{aligned} \tag{2}$$

Continuity principle

$$\begin{aligned}
 UA &= \int u dA \\
 &= \int_0^{r_0} u_{\max} (1 - (r/r_0)^2) 2\pi r dr \\
 &= -u_{\max} \pi r_0^2 \int_0^{r_0} (1 - (r/r_0)^2) (-2r/r_0^2) dr \\
 &= -u_{\max} \pi r_0^2 (1 - (r/r_0)^2)^2 / 2 \Big|_0^{r_0} \\
 &= u_{\max} \pi r_0^2 / 2
 \end{aligned}$$

Therefore

$$u_{\max} = 2U$$

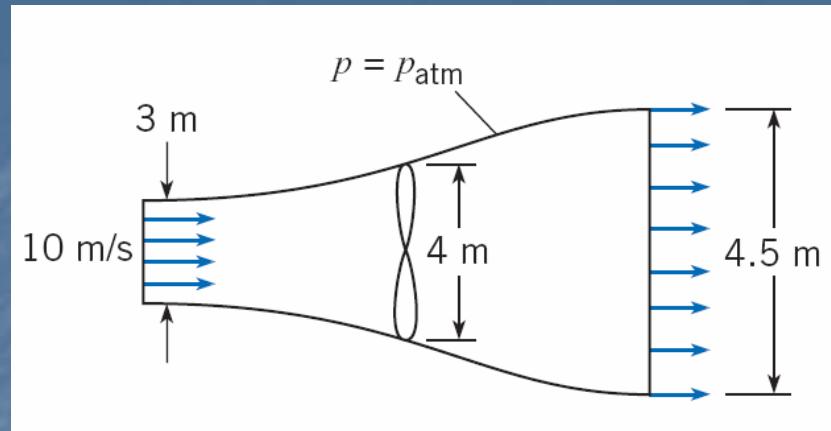
Substituting back into Eq. 2 gives

$$\int_{A_2} \rho u_2^2 dA = 4\rho U^2 \pi r_0^2 / 3$$

Finally substituting back into Eq. 1, and letting  $u_1 = U$ , the shearing force is given by

$$F_T = \frac{\pi D^2}{4} [p_1 - p_2 - (1/3)\rho U^2]$$

# Problem 6.66



Situation: Air flows through a windmill—additional details are provided in the problem statement.

Find: Thrust on windmill.

## APPROACH

Apply the continuity principle, then the momentum principle.

## ANALYSIS

### Continuity principle

$$v_2 = 10 \times (3/4.5)^2 = 4.44 \text{ m/s}$$

### Momentum principle ( $x$ -direction)

$$\sum F_x = \dot{m}(v_2 - v_1)$$

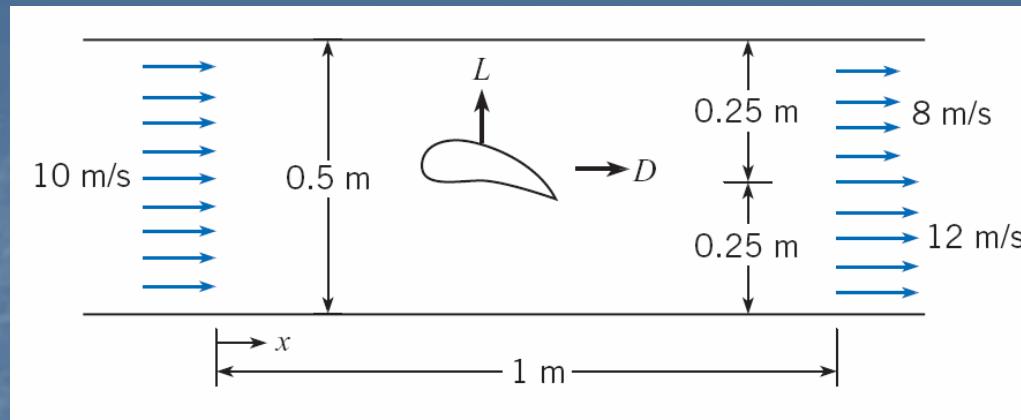
$$F_x = \dot{m}(v_2 - v_1)$$

$$= (1.2)(\pi/4 \times 3^3)(10)(4.44 - 10)$$

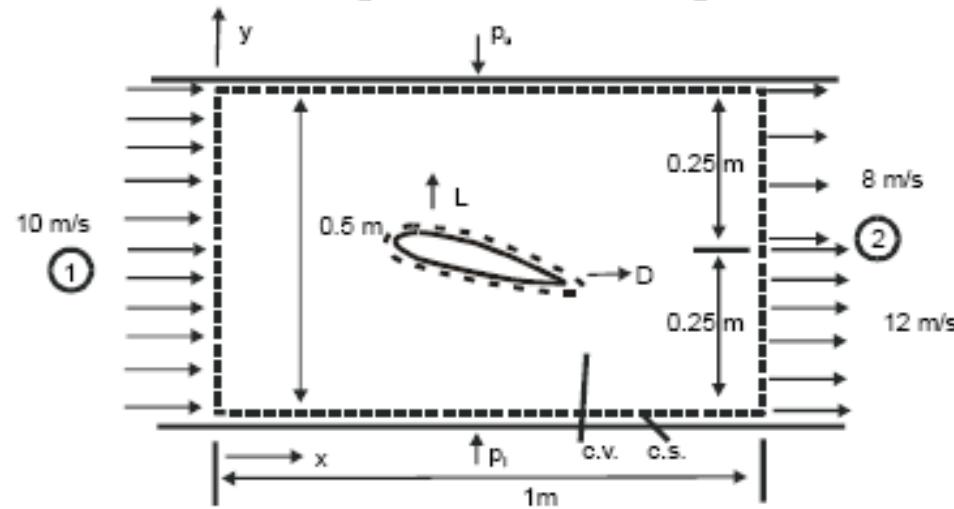
$$F_x = -472.0 \text{ N (acting to the left)}$$

$$T = 472 \text{ N (acting to the right)}$$

# Problem 6.69



Situation: Lift and drag forces are being measured on an airfoil that is situated in a wind tunnel—additional details are provided in the problem statement.



Find: (a) Lift force:  $L$   
(b) Drag force:  $D$

## APPROACH

Apply the momentum principle.

## ANALYSIS

Momentum principle ( $x$ -direction)

$$\begin{aligned}\sum F_x &= \sum_{cs} \dot{m}v_0 - \dot{m}_1 v_1 \\ -D + p_1 A_1 - p_2 A_2 &= v_1(-\rho v_1 A) + v_a(\rho v_a A/2) + v_b(\rho v_b A/2) \\ -D/A &= p_2 - p_1 - \rho v_1^2 + \rho v_a^2/2 + \rho v_b^2/2\end{aligned}$$

where

$$\begin{aligned}p_1 &= p_u(x=0) = p_\ell(x=0) = 100 \text{ Pa, gage} \\ p_2 &= p_u(x=1) = p_\ell(x=1) = 90 \text{ Pa, gage}\end{aligned}$$

then

$$\begin{aligned}-D/A &= 90 - 100 + 1.2(-100 + 32 + 72) \\ -D/A &= -5.2 \\ D &= 5.2 \times 0.5^2 = 1.3 \text{ N}\end{aligned}$$

Momentum principle ( $y$ -direction)

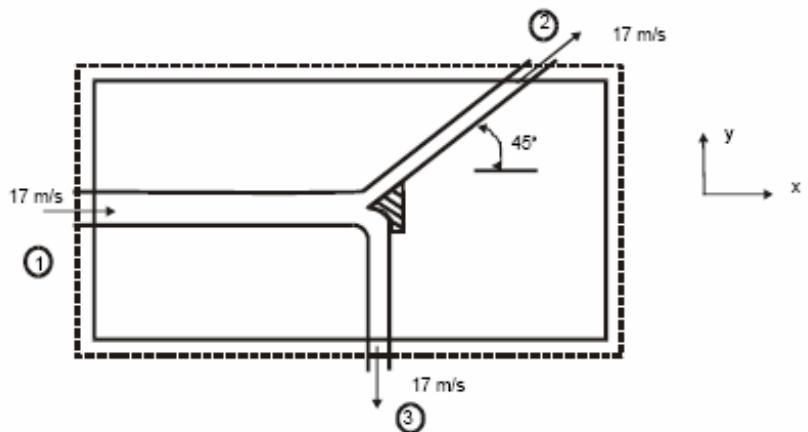
$$\begin{aligned}\sum F_y &= 0 \\ -L + \int_1^2 p_\ell B dx - \int_0^1 p_u B dx &= 0 \text{ where } B \text{ is depth of tunnel} \\ -L + \int_0^1 (100 - 10x + 20x(1-x))0.5 dx - \int_0^1 (100 - 10x - 20x(1-x))0.5 dx &= 0 \\ -L + 0.5(100x - 5x^2 + 10x^2 - (20/3)x^3)|_0^1 - 0.5(100x - 5x^2 - 10x^2 + (20/3)x^3)|_0^1 &= 0\end{aligned}$$

thus,

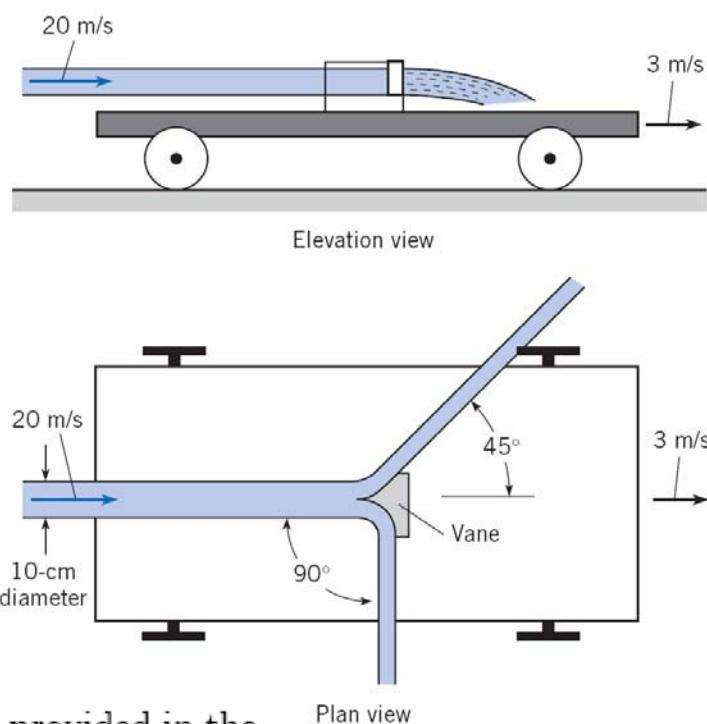
$$\begin{aligned}-L + 49.167 - 45.833 &= 0 \\ L &= 3.334 \text{ N}\end{aligned}$$

## Problem 6.73

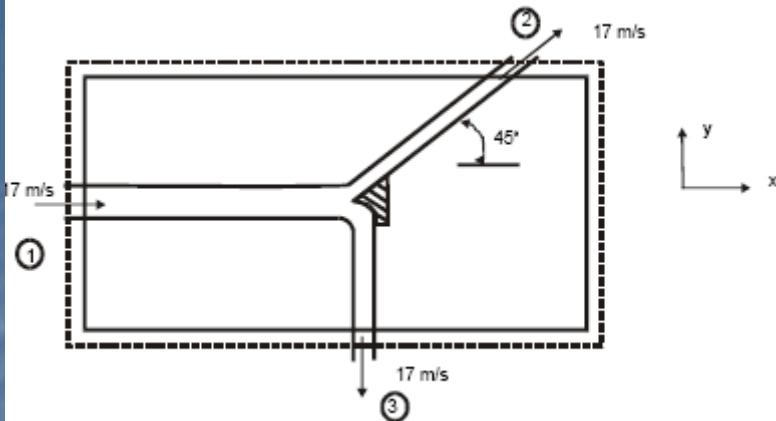
**Situation:** A cart is moving with steady speed—additional details are provided in the problem statement.



Find: Force exerted by the vane on the jet:  $F$



Plan view



## APPROACH

Apply the momentum principle.

## ANALYSIS

Make the flow steady by referencing all velocities to the moving vane and let the c.v. move with the vane as shown.

Momentum principle (x-direction)

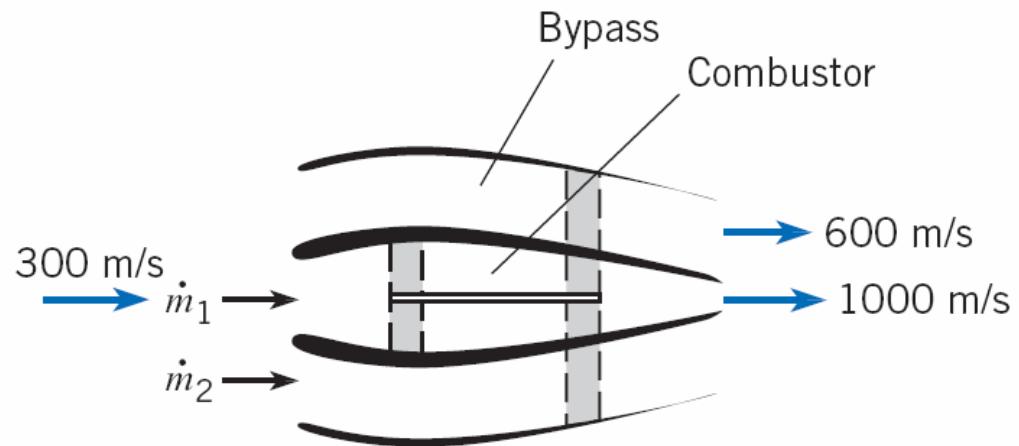
$$\begin{aligned}
 F_x &= \dot{m}_2 v_{2x} - \dot{m}_1 v_1 \\
 F_x &= (17^2 \cos 45^\circ)(1000)(\pi/4)(0.1^2)/2 - (17)(1000)(17)(\pi/4)(0.1^2) \\
 &= +802 - 2270 = -1470 \text{ N}
 \end{aligned}$$

Momentum principle (y-direction)

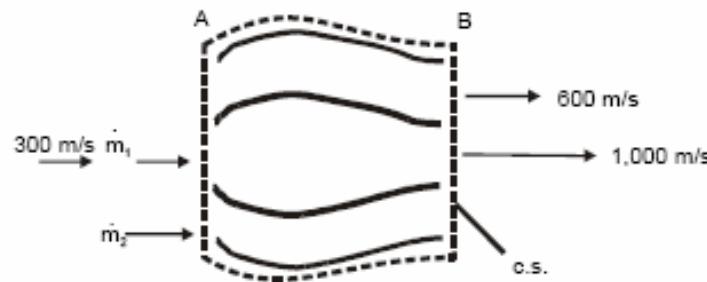
$$\begin{aligned}
 F_y &= \dot{m}_2 v_{2y} - \dot{m}_3 v_{3y} \\
 &= (17)(1,000)(\sin 45^\circ)(17)(\pi/4)(0.1^2)/2 - (17)^2(1000)(\pi/4)(0.1^2)/2 \\
 &= -333 \text{ N}
 \end{aligned}$$

$\mathbf{F}(\text{water on vane}) = (1470\mathbf{i} + 333\mathbf{j}) \text{ N}$

## Problem 6.84



Situation: Air flows through a turbofan engine. Inlet mass flow is 300 kg/s. Bypass ratio is 2.5. Speed of bypass air is 600 m/s. Speed of air that passes through the combustor is 1000 m/s.



Additional details are given in the problem statement.

Find: Thrust ( $T$ ) of the turbofan engine.

Assumptions: Neglect the mass flow rate of the incoming fuel.

**APPROACH**

Apply the continuity and momentum equations.

**ANALYSIS**Continuity equation

$$\dot{m}_A = \dot{m}_B = 300 \text{ kg/s}$$

also

$$\begin{aligned}\dot{m}_B &= \dot{m}_{\text{combustor}} + \dot{m}_{\text{bypass}} \\ &= \dot{m}_{\text{combustor}} + 2.5\dot{m}_{\text{combustor}} \\ \dot{m}_B &= 3.5\dot{m}_{\text{combustor}}\end{aligned}$$

Thus

$$\begin{aligned}\dot{m}_{\text{combustor}} &= \frac{\dot{m}_B}{3.5} = \frac{300 \text{ kg/s}}{3.5} \\ &= 85.71 \text{ kg/s} \\ \dot{m}_{\text{bypass}} &= \dot{m}_B - \dot{m}_{\text{combustor}} \\ &= 300 \text{ kg/s} - 85.71 \text{ kg/s} \\ &= 214.3 \text{ kg/s}\end{aligned}$$

Momentum equation ( $x$ -direction)

$$\sum F_x = \sum \dot{m}v_{\text{out}} - \dot{m}v_{\text{in}}$$

$$\begin{aligned}F_x &= [\dot{m}_{\text{bypass}} V_{\text{bypass}} + \dot{m}_{\text{combustor}} V_{\text{combustor}}] - \dot{m}_A V_A \\ &= [(214.3 \text{ kg/s}) (600 \text{ m/s}) + (85.71 \text{ kg/s}) (1000 \text{ m/s})] - (300 \text{ kg/s}) (300 \text{ m/s}) \\ &= 124,290 \text{ N}\end{aligned}$$

$$T = 124,300 \text{ N}$$

# Problem 6.87

Situation: A rocket with four nozzles is described in the problem statement.

Find: Thrust of the rocket (all four nozzles).

## APPROACH

Apply the momentum principle.

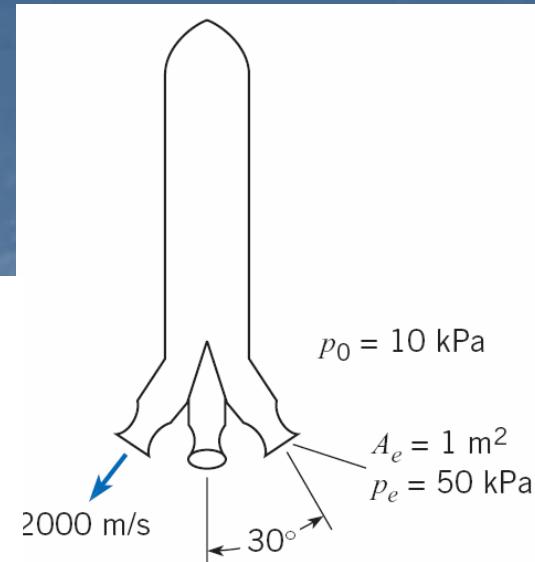
## ANALYSIS

Momentum principle ( $z$ -direction)

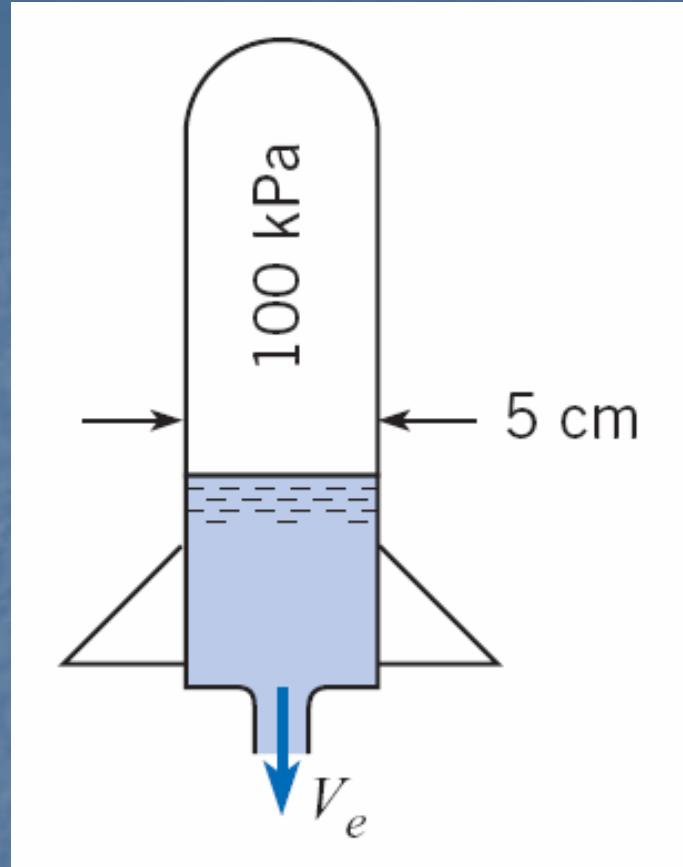
$$\begin{aligned}\sum F_z &= \dot{m}v_z [\text{per engine}] \\ T - p_a A_e \cos 30^\circ + p_e A_e \cos 30^\circ &= -v_e \cos 30^\circ \rho v_e A_e \\ T &= -1 \times 0.866 \\ &\quad \times (50,000 - 10,000 + 0.3 \times 2000 \times 2000) \\ &= -1.074 \times 10^6 \text{ N}\end{aligned}$$

Thrust of four engines

$$\begin{aligned}T_{\text{total}} &= 4 \times 1.074 \times 10^6 \\ &= 4.3 \times 10^6 \text{ N} \\ &= \boxed{4.3 \text{ MN}}\end{aligned}$$



## Problem 6.86



Situation: A toy rocket is powered by a jet of water—additional details are provided in the problem statement.

Find: Maximum velocity of the rocket.

Assumptions: Neglect hydrostatic pressure; Inlet kinetic pressure is negligible.

## ANALYSIS

Newton's 2<sup>nd</sup> law.

$$\begin{aligned}\sum F &= ma \\ T - W &= ma\end{aligned}$$

where  $T$  = thrust and  $W$  = weight

$$\begin{aligned}T &= \dot{m}v_e \\ \dot{m}v_e - mg &= mdv_R/dt \\ dv_R/dt &= (T/m) - g \\ &= (T/(m_i - \dot{m}t)) - g \\ dv_R &= ((Tdt)/(m_i - \dot{m}t)) - gdt \\ v_R &= (-T/\dot{m})\ln(m_i - \dot{m}t) - gt + \text{const.}\end{aligned}$$

where  $v_R = 0$  when  $t = 0$ . Then

$$\begin{aligned}\text{const.} &= (T/\dot{m})\ln(m_i) \\ v_R &= (T/\dot{m})\ln((m_i)/(m_i - \dot{m}t)) - gt \\ v_{R\max} &= (T/\dot{m})\ln(m_i/m_f) - gt_f \\ T/\dot{m} &= \dot{m}v_e/\dot{m} = v_e\end{aligned}$$

Bernoulli equation

(neglecting hydrostatic pressure)

$$p_i + \rho_f v_i^2/2 = p_e + \rho_f v_e^2/2$$

The exit pressure is zero (gage) and the inlet kinetic pressure is negligible. So

$$\begin{aligned}v_e^2 &= 2p_i/\rho_f \\ &= 2 \times 100 \times 10^3 / 998 \\ &= 200 \text{ m}^2/\text{s}^2 \\ v_e &= 14.14 \text{ m/s} \\ \dot{m} &= \rho_e v_e A_e \\ &= 1000 \times 14.14 \times 0.1 \times 0.05^2 \times \pi/4 \\ &= 2.77 \text{ kg/s}\end{aligned}$$

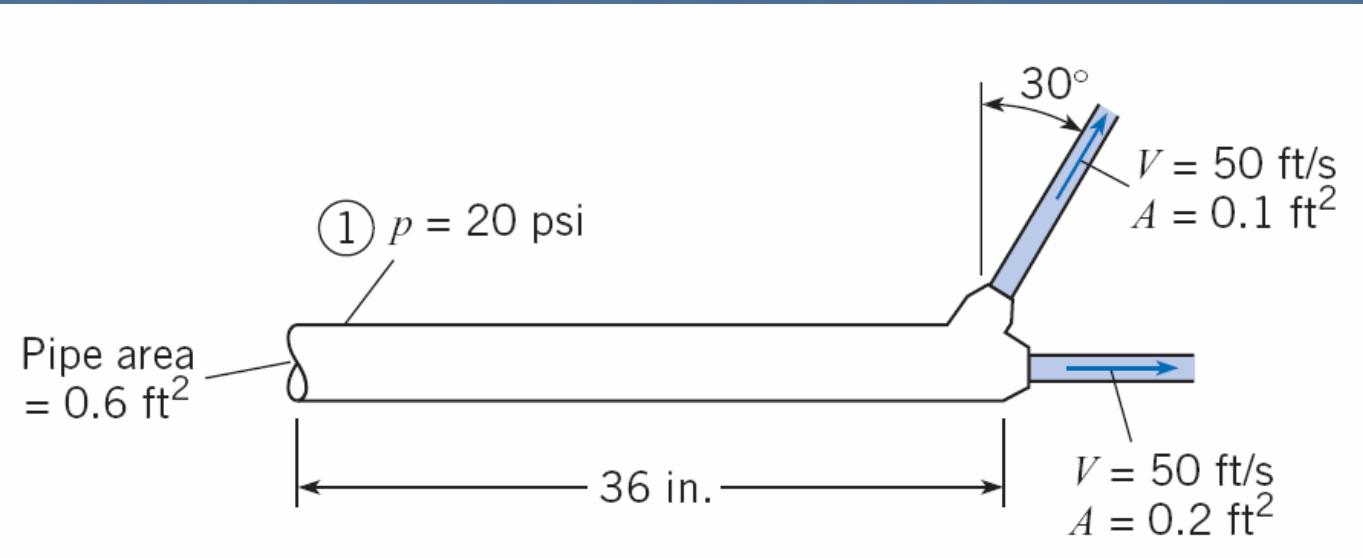
Time for the water to exhaust:

$$\begin{aligned}t &= m_w/\dot{m} \\&= 0.10/2.77 \\&= 0.036s\end{aligned}$$

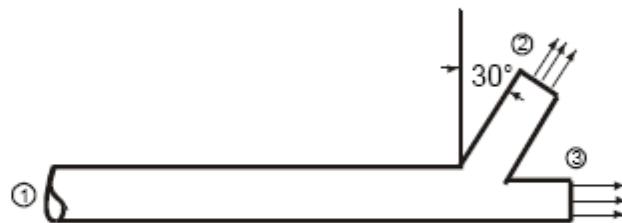
Thus

$$\begin{aligned}v_{\max} &= 14.14 \ln((100 + 50)/50) - (9.81)(0.036) \\&= \boxed{15.2 \text{ m/s}}\end{aligned}$$

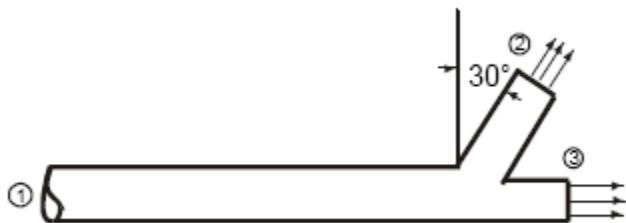
# Problem 6.99



Situation: Water flows out a pipe with two exit nozzles—additional details are provided in the problem statement.



Find: Reaction (Force and Moment) at section 1.



## ANALYSIS

Continuity principle equation

$$v_1 = (0.1 \times 50 + 0.2 \times 50) / 0.6 = 25 \text{ ft/s}$$

Momentum equation (x-direction)

$$\sum F_x = \dot{m}_3 v_{3x} + \dot{m}_2 v_{2x}$$

$$\begin{aligned} F_x &= -20 \times 144 \times 0.6 - 1.94 \times 25^2 \times 0.6 + 1.94 \times 50^2 \times 0.2 \\ &\quad + 1.94 \times 50^2 \times 0.1 \times \cos 60^\circ = -1,243 \text{ lbf} \end{aligned}$$

Momentum equation (y-direction)

$$\sum F_y = \dot{m}_2 v_{2y}$$

$$F_y = 1.94 \times 50 \times 50 \times 0.1 \times \cos 30^\circ = 420 \text{ lbf}$$

Moment-of-momentum (z-direction)

$$r_2 \dot{m}_2 v_{2y} = (36/12)(1.94 \times 0.1 \times 50)50 \sin 60^\circ = 1260 \text{ ft-lbf}$$

Reaction at section 1

$$\mathbf{F} = (1243\mathbf{i} - 420\mathbf{j}) \text{ lbf}$$

$$\mathbf{M} = (-1260\mathbf{k}) \text{ ft-lbf}$$







